RAag-31

rO0D
STORAGE

STABILITY

Edited by
RWIN A, TAUB
R. PAUL SINGH

CRC Press
Boca Raton Boston London New York Washington, D.C,



Acquiring Editor: Ron Powers

Project Editor: Albert W, Starkweather, Jr.
Cover design: Denise Craig

Library of Congress Cataloging-in-Publication Data

Food storage stability / [cdited by] Irwin A, Taub and R. Paul Singh.
.ocm.
Includes bibiiographical references and index,
ISBN 0-8493-2646-X {alk. paper}
1. Food—Storage. 1. Food—Quality. I Taub, Irwin A. i Singh, R. Paul

TP373.3.F68 1997

631.5°68—dc21 97-41662

cip

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibitity for the validity of all materials
ot for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher,

All rights reserved. Authorization te photocoapy items for internal or personal use, or the persenal or internal use of
specific clients, may be granted by CRC Press LLC, provided that $.50 per page photocopied is paid directly 1o Copyright
Clearance Center, 27 Congress Street, Salem, MA 01970 USA. The fee code for users of the Transactional Reposting
Service is ISBN 0-8493-2646-X/97/$0.00+$.50. The fee is subject to change without notice. For organizations that have
been granted s photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new
works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 Corperate Blvd,, N.W., Boca Raton, FL 33431

Trademark Notice: Product or corporale names may be wrademarks or registered trademarks, and are used only for
identification and explanation, without intent (o infringe.

© 1998 by CRC Press L1.C

No claim to original U.8, Government works

International Standard Book Number 0-8493-2646-X

Library of Congress Card Number  97-41662

Printed in the United States of America 1 2 3 4 507 890
Printed on acid-free paper




|

chapter eleven

Mathematical modeling
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Introduction

The purpose of this chapter is to present and discuss some of the most important examples
of mathematical modeling as they relate to changes in quality during food storage. No
universal mathematical theory exists that can be used to model all quality changes in
foods. The variety of mechanisms and phenomena is too great to be encompassed within
any single, usable set of equations. Although we describe a general framework for such
a theory in the next section, it is too general and vague to be of much immediate help in
practical situations, and we are forced to specify the theory more narrowly in order to
make it applicable.

The word “quality,” as used in descriptions of food, can be interpreted in many ways.
A consumer may perceive the food as of high quality for a number of reasons, and a food
scientist may make a similar (or contradictory) judgment for different reasons.In this
chapter we do not define quality precisely but leave it as a somewhat intuitive concept.
Further discussion of the definition can be found in some of the other sections of this
book, especially Chapters 2 and 12.

The quality of foods, however defined, is assumed to be capable of change with the
passage of time. The scale of the time change may be short (e.g., minutes, during
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332 Food Storage Stability

processing) or long {e.g., months, during storage). The agents causing the quality change
are usually physical, chemical, or biological and may act in extremely complicated com-
binations. Often, temperature is the single, dominant factor, but the change may also be
affected by the presence of moisture, oxygen, and bacteria of many kinds. The main part
of the review deals with the situation where there is a single, dominant variable (say,
temperature) whose time variation is known. The problem of finding the time variation
of the dominant variable is not discussed here.

There is an intimate relationship between the mathematics involved in estimating
quality loss and that involved in the study of food-processing methods. The quality loss
during storage may be regarded as a form of processing at relatively low temperatures
but going on for rather long times. It is natural that many of the concepts developed in
connection with food processing will play similar roles in a quality-loss context, and so
quantities such as z, Qyy and F, are important to us.

The literature dealing with this subject is large, and we make no attempt to cite all or
even most of it. Some references that the author has found valuable are given in the
bibliography at the end of this chapter. Any review of a technical field is bound to reflect
the viewpoint of the author, and the present one is no exception. The main intention here
is to describe a version of the existing theory which (the author believes) offers the best
basis for future work in the field. Undoubtedly this slights many worthwhile contributions
of others in this field, a flaw which the author regrets but cannot correct within existing

limitations of space.

General theory

The quality is assumed to be defined numerically in some way as the quantity A, a function
of time, f, and possibly also of spatial position, x. The latter dependence will not play a
major role in what follows, but, if food is stored in a large mass, it may be necessary to
consider it. We define also v,(t,x),u{t,%), . . ., v,{£x) as the variable agents of change. For
example, v,(t,x) might be the temperature, v,(f,x} moisture content, etc. Any of these
quantities may also involve constants or parameters, which we collectively denote by P.
Then it is reasonable to think that the quality change is governed by some mathematical
model of the general form

dv,/dt = W(A, v, v, ..., 0,, P)

dvz/di=‘l’2(A, U}I U'_J_f et Um" P)

dv, Jdt=W (A, v, v, ..., 0, P).

This system of ordinary differential equations is to be solved with initial conditions at
time ¢

A(to) = Ao’ vl(to) - v'iu’
vz(to) = Uggr wees vm(tﬂ) =V,

In the differential equation system we usually assume that the quantities on the left and
right sides of the equality signs are to be evaluated at the same time, ¢. However, it may
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occasionally be desirable to evaluate some of the quantities on the right side at an earlier
time, in which case the model is said to be of differential-delay or differential-difference
form. We do not pursue that case in the present chapter.

This system is too general to be useful. It must be specialized by choosing the functions
W, W, W, ..., W, and the parameters, P. An example of a system which is more specific
but still general enough to contain many commonly used models is obtained by assuming
that m = 2 and making the definitions

W o=ova(A,P)
W =W, dB/dy,
and o,(t,) = B(t,). Then the model equations become
dAjdt = vaA, P)
do, fdt =W, {v,) dp/do,
do, /dt =0, (v, ).
The function a may be any reasonable function of A containing parameters P, and § is

any reasonable function of v,. If ¥, is eliminated between the last two equations, and the
chain-rule used, we obtain in place of the second equation

dv, jdt = dp/dt.

If this is integrated and the initial condition used, we see that the above differential
equation for v; can be replaced by

v, =p= B[vz(t)]-

This system may be regarded as a prototype for the models used in estimating shelf life

and quality loss.
To see how this model reduces to a familiar form, define

+v, = +f = k = the rate constant
v, = T = absolute temperature, degrees Kelvin
a{A,P)= A"

and the symbol P is taken as the lone parameter 1, the order of the process. Then the
model becomes

dA/dt = £l T(t)] A"
dT/dt = W,(T).

The latter of these equations simply determines the function T(¢), the temperature history
which the food experiences. Henceforth, we assume that the temperature history, T(f), is
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known, and so it is unnecessary to consider the last equation further. The form of the
function k[T] specifies the kinetics of the process, which will be discussed later.
In the following derivation, the quality A is assumed to obey the above differential

equation,
dAjdt = +k A" (k=0, n=0),

and the initial condition A(t,) = A,. That is, A obeys an n-th order process. The rate function,
k, has dimension (dim) given by

dim k = (time)"l(dim A]“”).

The rate function k may depend on many variables, e.g., temperature, moisture, oxygen
level, and any of these may itself depend on time. We assume that one of these variables
is dominant, that the dominant one is temperature, T(t), and that T(t) is known. However,
the derivation is quite general and applicable if the dominant variable is not temperature
but some other variable or combination of variables, as long as the time dependence of
that variable is known. It is easily verified that, if k = k[T(¢)], the time dependence of the
solution to the differential equation can be expressed in terms of

s=f

o(t) = f KT(s)]ds, (1)

and the solution can be written
_ e
A1) A, =[1-cA, o(t)] forc = 0 2)

= el #)] forc=0. (3)

Herec=1-n,and soc= 1.
The time dependence of A is entirely governed by the behavior of ¢(t), which is a

nondecreasing function of ¢ with ¢(t,) = 0.
The above solutions may be expressed in terms of the quantities

R(¥) = fraction of quality remaining at time ¢
= Alt)/4,
D(t) = fraction of quality lost by time ¢

= 1-R(t)=[A, - A(1)]/A,

as

R(t)=1£D(t) =G[o(t); ¢, A,]
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in which

G[(i)(f); 0, AO] = et forc=0

G[q)(t); c, Ao] = [1 + CAO“Q)(!‘)]UC fore=0.

The simplest situation is that of constant temperature, say T =T, and k = k, = k(T}),
for which case

oft) =k, (tt,)

is to be substituted in the preceding equations. We may then write the solutions in several
important circumstances as follows: For n = 0, ¢ = 1, a zero-order process,

R(f) = A(t)/A, =1:¢/A, =1xk(t £t )/A,

Alt)= A, td=A, tk(t£t ).
Porn =1, c =0, a first-order process,

R(t) = exp| 0] = el 2]

A(f) = AO exp(i(b) =A e[ik(riru}]

&

The change in form between the cases ¢ = 0 and ¢ = 0 is sometimes inconvenient, and
it is useful to have a formula that displays explicitly the behavior of A in the case where
¢ is small. One such formula can be found by expanding ¢ in powers of ¢, equating
coefficients and neglecting all terms after the first correction in the general solutions. The

result is

R(t) = A(1)/ A, =00

™t} = (I/Z)q)(t) tlnA.

(4)

The formula is accurate only when | is small but shows how the transition occurs between
the cases ¢ = 0 and ¢ = 0.

The behaviors of these solutions in more-or-less typical situations are displayed in
Figures 1 through 3. In these graphs the remaining quality, R, is shown as a function of
t (hours) for various values of the parameters. The temperature, T, is assumed constant,
and A is taken to have the initial value A = A, = 100 at time { = ¢, = 0. For this special
case the parameters are c (i.e., the order) and k,. Figure 1 shows the effect on R() of varying
¢ for a fixed k, = k = 0.1. The effect of changes in k for fixed c are illustrated in Figure 2,
and Figure 3 displays a comparison between exact solutions, Equations (2) and (3), and
approximate solutions, Equation (4), for small c.
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Shelf life

We define the lowest acceptable value of A as A, If A declines to or below A,, the quality
is assumed to be unacceptable. The time at which this happens is t,, and the shelf life is

L=t +t

b o

If ¢(t) is a strictly increasing function (d¢/dt > 0), t, and L are unique. If R, = R{t,), the
value of £, is found by solving for ¢ the equation

R(t)=R,.
This condition can also be expressed as
qalt,) e 4,]=R,,
or, solving for ¢(4,),

q)!’ = (p(fb) = W(Rb’ Cs Aﬂ)’ (5)
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provided we define the function W to be
w mAOC(liR;)/c forc=0
=+InR, forc=10.

The values of ¢, and L depend on ¢, R,, Aﬂ, (if ¢ = 0) and very much on the form of
¢(#). In the special but important case where T is constant, and so k is constant, k = k,, and
¢ = (0 we have to solve

k(=) =W = A (12R1) e, (6)
which leads to
L=A1£R7)/(ck,). (7)
When ¢ = 0, we obtain
L =+{1/k In(R,). (8)

Similarly, an approximate formula for the shelf-life when |d| is small and T constant can
be found from Equation (4) by solving

+InR, = %(1 fcin AU) +cd,’ /2
for ¢, = k,L. After some simplification the formulas
L= ¢I¢ /ka

b, = #{in R 1+ emn(4,R,7)

are found.
When T is constant, it is clear that the shelf life, L, depends inversely on k, in all cases

considered here. The dependence on ¢ and R, is illustrated in Figure 4 for the case where
A, = 100. In general, L increases as ¢ increases and R, decreases.

Arrhenius kinetics

In this section we discuss the dependence of k on T(1), i.e,, the kinetics, an aspect of the
problem that we have largely ignored up till now. It is assurmed in what follows that T(¢),
the absolute temperature history of the food, is known. In practice it is often difficult to
find or calculate this function, but for the purposes of the present exposition these obstacles

are ignored.
The most common assumption about the behavior of k is embodied in Arrhenius

kinetics, i.e., in the assumption that

F ek E{i—Eﬂ/{RgT(!)H

1

where k, = the pre-exponential constant, E, = the activation energy, and R, = the universal
gas constant.
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This can be expressed in a slightly different form as follows:

K-k e[:cﬁ{(Tr/T),ﬂ}]

O

E<E,/(RT)

E ook E[t.‘fﬂ/(RgT'r)]

r 1

T, is assumed to be a “standard” or “reference” temperature at which the rate is known
to be k. It is clear that k = k, when T=T. In a food-processing context 7, is typically
3941 K correspanding to 250°F, In almost all food-storage situations, reasonable values
for T, would lie in the range 250 < T, < 350.The parameter E may be regarded as a
dimensionless version of the activation energy. Since R, =~ 2, and usually E, > 10,000
cal /mol, the values of E commonly exceed 15 and may reach 100 or more.

For many purposes it is convenient to define

() =[T/T{)]+1 or T(t)=T J[L+ (8],
in which case we can express the Arrhenius Law as
k= k eB0) 9)
In this form x{#) is a dimensionless function of temperature. Notice, however, that x(¢) is,

loosely speaking,“inverse” to temperature: x(t) increases when T decreases and conversely.
Figure 5 shows the relation between x and T/ T, the absolute temperature ratio. As T
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decreases, x increases, and ~Ex becomes large and negative, implying that k gets smaller,
and the process slows down. When x =0, T = T, and k = k. If logarithms are taken of both

sides in the above equation, we obtain
Ink=Ink, +Ex

Thus, a plot of In k versus x will be a straight line with slope = -E and y-intercept = In k.
If T changes over a narrow enough range in the vicinity of T, then xl < 1, and a
binomial approximation shows that

T =T ({1xx).

Therefore, T and x are approximately related in linear fashion as long as the temperature
range is not too great, as can be seen in Figure 5. It is also true that, if k| is sufficiently
small, Equation (9) can be approximated by using a Taylor series to obtain

k=k[14Ex]

However, this is inaccurate unless Ex < 1; since  is usually quite large, this approximation
is good only when x is extremely small, i.e, T is very near T,
After making the above definitions, the important quantity ¢(f) can be expressed as

o(t) =k, F(¢)

t
F(t) = feiE‘“:S) ds = f10t5.1‘(5)f3 ds

s=f, Sl

B=inl10=2303.
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The function F(t) always has the dimension of time. If T'is constant and equal to T, between
times f, and {, then x = {} over the entire range of integration, and

F(t)=tki .

E(t) is therefore the elapsed time at temperature T,. The time dependence of the quality
loss is governed only by ¢(f) or F(i). If T(t) and x(t) are variable, F{f) is the time at
temperature T, that produces the quality loss caused by the changing temperature. If the
storage or process starts at time {, and ends at time /, then it is usual to call F(t,) = F,,
the equivalent processing time at the reference temperature. Commonly the term F, is
used in a food-processing context only when the reference temperature is 250°F and refers
to a complete process. Here, in a food-storage context we shall use F(i) and F,(t) inter-
changeably to mean the processing time at the reference temperature (whatever that
temperature may be) that is equal to the integral from ¢, to t of el-£6},

With these definitions the shelf life can be expressed as follows: the time, t,, at which
the quality becomes unacceptable is found by solving Equation (5),

q)(th) - k[F(tb) =W,
which leads to
b= (W)= (W/k,). (10)

Then
L=t -t

]

Frequently, it is difficult to solve the above equation and find ¢, explicitly even if we know
the temperature history, T(¢). However, it is possible to do this in a few cases, and an

example is given later in this chapter.
In dimensionless form the Arrhenius Law can be written

k - k 101EX/B
A quantity that is often used in defining food processing is the z-value, defined with
reference to T, as follows: —z is the decrease in temperature required to reduce k, to k./10.
[t is easily seen that the x which satisfies that condition is
x=B/E
corresponding to the temperature
T=TE/E+B)=T,

2"

The definition of z implies

Mo
i
;_,_]
H
‘N
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which combines with the preceding equation to give
z =T B/(E + B).
If E » B, as is often the case, this simplifies to the familiar form
o 2
z=TB/E=BRT’/E, .
This refationship states that as activation energy increases, smaller reductions in temper-

ature are needed to reduce the rate to (1/10)th of its original value. Notice that z is
approximately, but not exactly, proportional to 1/E,.

The Q,, value

Another quantity that has been defined and studied in connection with food processing
is (3, defined as

[Rate at Celsius temperature (i + 10)]

10~ [Rate at Celsius temperature h]

where h is the temperature in °Celsius. Q,, is usually described as a measure of the
sensitivity of the reaction to temperature change. The activation energy, E_, and its dimen-
sionless counterpart, E, are also measures of the same sensitivity, so it is reasonable that

there is a relation between (), and E,.
Instead of examining this relationship for ,,, we generalize the definition slightly by

defining

_ [Rate at Celsius temperature (h+ 6)] _k{h+d)
* [Rate at Celsius temperature hl k)

§ is the temperature difference in degree Celsius. Since T is the temperature in degrees
Kelvin,

h=T+S5, 5=273"
The relation between Q; and E, may be found by using
Q, = k{h+8)/k(h) = k(T £S5 +8)/k(T £5)
k, exp(i(Ea/Rg ](T +5+ 6)“]

Y exp[i{En /R T iS)ﬂJm '

InQ, = £,5/[R,(T£5)T =5+ 5)]

= Eﬂa/-Rgh(h + 6)]

tog,, U5 = Eﬂé/:Rng'l(h + 6)]
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If & = 10, we obtain

log,, O, = {10/(1288)} E,/{n(n+3)}

=2.19 Ea/{h(h + 6)},

If, instead, it is true that § <€ /i, then

08,5 Oy = E, a/[RgBhl].

If the temperature is constant, say /1, and the shelf life and rate are L(k) and k(h), respec-
tively, Equation (6) implies

k(i) =wW/L(h).
Stmilarly, at temperature b + 9,
k(h+8)=W/L(h +8),
and so the definition of (, implies
Q, = L(h)/L(h+3).

Statistical determination of shelf life

Usually, two kinds of information are needed in order to estimate the shelf life of a food,
namely, the temperature history and the food parameters. Here we shall focus on the
problem of determining the food parameters by experimental and statistical means. We
assume throughout this section that the kinetics are of Arrhenius form, as is usually done.
Then the parameters that we must determine are ¢ {(or u), E (or E,), k, and possibly A,
the initial quality.

The experiments commonly consist of measurements of quality at various times and
constant temperatures. If the times are designated as t, f,, . . ., £, and the temperatures
as Ty, Ty, . .., Ty, the data can be arranged in an array or spreadsheet as follows:

Time | Temp= T, T, Ty
[l AI} 12
t? A?.l A'."l
[N ANI AN'l

The entry in the i-th row and j-th column is the quality measurement at time t, and absolute
temperature T, The entries in the first column, A, describe the experimentally obtained

v
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time-variation of quality at the constant temperature T}, and so on. From these measure-
ments we want to find estimates of ¢, E, k, and A,, based on the formulas described in
previous sections.

Since we assume Arrhenius kinetics and constant temperature in each column of the
spreadsheet, the function ¢(t) can be expressed for the j-th column (j-th temperature, T},
or x;), and i-th time, £, as

If we also assume {, = 0, the entry A; in the spreadsheet should be of the form

. ifc .
Aij “—“(A(. —C kjti) ife=0
=A, e ifc=0

Determination of the parameters is usually carried out by doing statistical regression

calculations based on these models.

The procedures for estimating the parameters are affected by what is assumed to be
known. The simplest situation is that in which the order, i.e, ¢, is taken as given. In that
case only linear regressions have to be done; otherwise, nonlinear regression calculations
are usually required, and the computational burden becomes considerable. In the next
paragraph we summarize the regression procedures when ¢ is known. In all these cases
a two-stage regression procedure is deseribed, in which each temperature is first treated
separately to find A, and k, and then the results for k; at the different temperatures are
combined to estimate k, and E. This appears to be the most commonly used method.

If ¢ = 0 (a first-order process), the regression is based on the model found by taking
the natural logarithm of the above model for ¢ = 0, which gives the model

If a general, linear regression for U as a function of ¢ has model
U, =B +B¢,

then the regression forc=0and T = T; consists of choosing
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The usual regression procedure also furnishes estimates of o, the error standard deviation,

and the standard errors in B, and B,.
If ¢ = 0, the model can be found by taking the ¢-th power of each side in Equation (2)

to obtain
s — Ly
Ai.j =A, ickj.t,..

The usual regression method is performed with

and then

A cC€ _ ife
Bo - Ao or Ao - Bo

By=dZck, or k =+B/c.

Again the various standard deviations are also estimated. The simplest such case is ¢ = 1
(a process of order zero), for which the regression consists merely of fitting straight lines

to the plots of the data, A; versus ¢, for each j.

Having found estimates of k; for each j, the quantities k. and E are found by doing a
linear regression based on the model

Ink; = infk, ) £ Ex,

which results from taking the natural logarithm of Equation (9). The general linear regres-
sion model has

U, =B, +Bx,
where

u, - ln(k ]

i
After finding B, and B, by regression, &, and E are found from

B,=Ink, or k =e®

=+E or E=4#B

The usual regression method once more gives estimates of o and the standard deviations
of B, and B,.The above descriptions are all based on the assumption that ¢ is known in
advance. In practice the data are usually subjected to preliminary visual checks, to see
whether the graphs support the claim that ¢ has the hypothesized value. These “eyeball”
checks are valuable, but it is questionable whether they can detect modest departures
from the assumed value of ¢. It may be desirable, therefore, to subject the data to a further
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analysis by nonlinear regression, in which the four parameters ¢, A, k, and E are all sought
at the same time. An example of such a calculation has been presented by Haralampu et
al.2 Also, a recent paper by Rhim et al. takes a step in this direction and is a departure
from the usual approach in assuming that tests are conducted with linearly varying
temperature.'2

The conventional two-stage process described above is slightly open to questions of
interpretation since the intermediate quantities k; are treated as data in the second stage
but are really quantities derived from the data of the first stage. It is not likely that much
error in E or k, is caused by this, but it appears to miscalculate some of the correlations
among the parameters and hence some of the error estimates. Again, more study is needed
on the question, and this also suggests that nonlinear regression be undertaken in spite

of its computational demands.

Shelf life at variable temperature

An important problem in shelf life estimation is that of finding the effect of temperature
variation. In principle, if the temperature history of the food is known, the quantity

can always be calculated, using numerical integration if necessary. The shelf life, L, is then
determinable by solving the equation ¢(¢,) = k F(t,) = W for ¢, provided the parameters of
the food are known. I Arrhenius kinetics are assumed, and E is known, F(f,) becomes

e
Ft,) = f e P gy
1

o

The process of determining L is relatively easy when the temperature is constant during
storage (i.e., x is constant) but is somewhat more taxing if x varies. While the solution can
usually be found by numerical approximations, these are not always helpful in under-
standing the effects of changes in the parameters or the temperature history. For the latter
purpose it would be useful to have exact or accurate approximate solutions, from which
the influence of these changes could be seen.

A small number of viable formulas are known, some of which have been obtained by
assuming that the temperature range is narrow enough so that T and x are approximately
related in linear fashion:

x=1-{T/T,).

Some results that are accurate over a wider temperature range are given by Rhim et al.”?
Rather than describing these solutions, we shall present a different example of an exact
formula that is valid over any physically meaningful temperature range, provided the
pulse has the assumed shape. This solution will be used later in the present chapter to
illustrate the calculation of shelf life.
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curve is temperature in degrees Fahrenheit.

In an recent paper,’ the author considered a temperature pulse of the form

x=x, [1 + {(f £m)f{r, + ’”)}2}

The pulse starts from x = 0 at time ¢, attains x = x,, at time t = m and returns to x = 0 at
t=t, = 2m —t. The pulse is symmetric about t = m. Figure 6 displays the dependence of
both x and temperature on £. We assume x,, < 0, so the pulse in x is negative, corresponding
to a positive pulse in T. Then a result was found that was equivalent to

F(t)£ F(t,) = C{q(al/) +q(a)+ 1}

w=+Ex,, a=(2u)", V=(t+m)/(ms1)

m’

C= (m +t )(n/u)lfzf.'”,

where 7 is the standard, normal cumulative function, provided f, < t < f,. In particular at
the end of the pulse we have

F(t) - F(t,) = C{2q(a) - 1)

This formula shows that the F accumulated during the pulse is simply proportional to
m -1, ie, to the pulse width. Moreover, since E and x,, influence F only through the
combination u, changes in E and x,, that lead to the same u also lead to the same
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accumulated F. Although these results are specific to the temperature pulse assumed here,
they are useful as a guide to what we might expect for pulses of generally similar shape.
The author described formulas for an entire family of such pulses.!*

An example

This fictitious example is about finding the shelf life, L, of a food item whose quality, A,
varies with time according to the model of Equation (2) with n = 0.2, ¢ =1 - n = 0.8. The
initial quality, at time {, = 0, is taken to be A = A, = 100 on some scale whose true meaning
is irrelevant to the example. The item is expected to be stored at 68°F = 20°C = 293 K for
500 h or about 21 days. The item obeys Arrhenius kinetics with activation energy, E,, of
20 kecal/ mol. Then

T =293

E=20,000/293/1.986 = 34.37.

The quality is assumed to have A, = 40, i.e,, the item is unacceptable when A deteriorates
ta or below 40. Then

R, =04.
The rate constant, k, = k,, is found by solving Equation (6) in the form
ko= AS(1£R5)/(cL)
= 100°* {1+ 4%} [0.8(500)] = 0.05171.
Thus at the reference temperature, 68°F (T = T, = 293), we have
x=0, k=k =005171, L=500h.

The values of the rate constants and shelf lives for storage at other constant temper-
atures are found by applying the formula

k=ke™

r

to obtain k, and substituting in Equation (6)
L=AS(1+R7)/(ck)
to find L. At 77°F = 25°C = 298 K we obtain

x =(293/298)+1=+01678
k = (0.05171) e3+¥7H00878) _ 0 09035

L =100 (1+.0.4°)/[.8(0.09205)] = 281 h.
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Similarly at 86°F = 30°C = 303 K we obtain

x = £0.03300, k =0.16075, L =161 h.

Now suppose that there has been a failure of the cooling system that controls the
storage area, leading to a temperature pulse of the type considered at the end of the
preceding section. We assume that the pulse commences at £, = 100 h, reaches its maximum,
86°F or x,, = -0.0330, at m = 150 h, and returns to 68°F or x = Q at t = £, = 200 h. We want
to determine the decreased shelf life resulting from this cooling failure. The formulas of
the preceding section give

w=tEx, = +(34.37)(+0.03300) = 1.1342

C = 50(w/1.1342) 102 = 258.7

12

a=[2(1.1342)]"" = 1.506
q{n)=0.934

F(t,) £ F(¢,) = 258.7]2(0.934) £ 1] = 224.6 h.
Then the shelf life is found by solving

F =t +(Lifg)+[F(ts)ip(ts)]’

n

where F is the nominal or intended shelf life at x = 0, i.e,, F, = 500. This leads to

L=F +t *t, i[F(tf)iF(fs)]

L=500+200£100x224.6=3754h.

The effect of the pulse has therefore been to reduce L from its nominal value, 21 days, to

about 16 days.
We might also ask about the effects that errors in estimating E, have on the shelf life.

This could be investigated by simply making several different calculations for various
values of E. It might also be studied by carrying out a Taylor series expansion of
Equation (8}in powers of (E ~ E .}, where E_ is the nominal or intended value of E. Omitting

the details, we find that
(8L) = 5.6 (8E),

where (8L) is the change in L caused by the change (8E) in E. As expected, an increase in
E causes a loss of shelf life.

Conclusions

The theory given above is reasonably complete as to the implications of the simplest and
most used mathematical model. The “General Theory” Section of this chapter makes an
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attempt to describe a framework into which a more complete theory might fit, but there
seems not to have been much effort to go beyond the simple theory. Certainly, the situation
where two or more interactions affect the quality is of importance, and assumptions other
than Arrhenius kinetics may sometimes be appropriate.

As mentioned in the chapter’s Introduction, this model must usually be combined
with equations that determine the temperature in the food. This adds a formidable layer
of difficulty to the entire problem. The temperature most often depends on both time and
position within the food and is governed by one or more partial differential equations.
These have to be solved to determine the time variation of the highest temperature in the
food, which is then taken as T(f). In many cases the solutions of the partial differential
equations have to be carried out by numerical means and may be the most time-consuming
part of the problem. The present review has completely ignored this aspect of quality loss
estimation and focused entirely on the narrower and more manageable aspects that arise
when T{i) is known. However, if significant energy is absorbed or liberated during the
chemical reactions that affect quality, it may be impossible to treat separately the quality
loss and thermal parts of the problem.

It is clear that much remains to be dene. Many of the recent attempts to deal with
quality loss are computer-based, and this is to some degree inevitable. However, there are
large bodies of mathematical theory dealing separately with quality loss and thermal
variation, some portions of which may help to reduce the difficulty of these problems.
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